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ON O N E  CLASS OF I N V E R S E  P R O B L E M S  

OF V A R I A T I O N  IN  S H A P E  OF V I S C O E L A S T I C  P L A T E S  

I. A .  B a n s h e h i k o v a  1 a n d  I. Y u .  T s v e l o d u b  2 UDC 539.37 

We study a class of inverse problems (IP) of finding kinematical external actions producing the required 
residual deflections of a physically nonlinear viscoelastic plate over a given time (in a geometrically linear 
formulation). The correctness of the IP is shown, and the iterative method used in solving the problems is 
substantiated. The upper bound of residual stresses occurring in the plate after removal of external loads is 
estimated. Some numerical examples are given. 

1. F o r m u l a t i o n  of  t h e  Inverse  P r o b l e m .  We consider a viscoelastic plate of constant thickness h 
whose median plane Oxlx2 occupies region S bounded by a contour 7, the z axis being perpendicular to this 
plane. We assume that at any time t the deflection w = W(Xl,x2,t)  is negligible as compared with h, and, 
hence, for total strains we have [1] 

ski = -zw,k l ,  (1.1) 

which corresponds to the state of pure bending. In (1.1) and below, k, l = 1, 2; the subscript after the comma 
denotes the derivative with respect to the corresponding coordinate. 

The equations of equilibrium are written as [1] 

h/2 h/2 

Q k = M k , , t ,  Q k , k = - q ,  Q k =  f aakdz, M k l =  f aktzdz. (1.2) 
-h/2 -h/~ 

Here Qk and Mkl are the cutting forces and moments, q is the intensity of external load, and crkz are the stress 
components. Summation from 1 to 2 is performed over repeat subscripts. 

From (1.1) and (1.2) follows the equation of virtual works [1] 

f  k, k,dV = f qwdS + f ((Q + OH/Os)w-GOw/On)ds, (1.3) 
v s 7 

where Q = Q~nk, H = Mklnkti,  G = Mklnknl,  nk and tt are the components of unit normal and tangent 
vectors to the contour 7, s is the arc length of the contour, and 

h/2 

/ 
v -~,t2 s 

It should be noted that the fields ~kl and akl in (1.3) can be unrelated. 
The governing relations for the strain of the plate material are written as 

~kl = aklmnCrmn + ~Ck I. (1.4) 
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Here aklmn and e~l are the components of the elastic compliances and viscous strain (creep strains). We 
assume that the creep-strain rates r/k t = e~l depend only on stresses and satisfy the following condition, which 
generalizes the stability postulate [2]: 

Aqk,Aa, , /> Aaktm.AaktAa,~,. ,  A = const, A > 0, Aakt = a~'t ) - a ~  ), A~,I = r/,l(a~ )) - T/kt(a(m2)). (1.5) 

Thus, if 

rlkl = FOE/Oakl , 1" = F(E), E = (aklmnaklqmn) 1]2, (1.6) 

one can say that (1.5) is satisfied with the proviso that F'/> F /E />  A, which, in turn, is ensured if F(0) = 0, 
F'(0) = A > 0, and F"(E) /> 0. The latter conditions are satisfied, for example, by the following functions 
used in creep theory [2]: r - -  B [ e x p  (AE/B) - 1], r = B s i n h  (a2/B), a n d  r = - E )  ( B  = c o n s t ) .  

The IP considered below involves searching for the kinematical actions producing the required residual 
shape of the plate over the given time t . ,  i.e., one should select a deformation path w = w(x l , z2 ,  t) such 
that at time t = t .  the deflection w takes the given value ~b.(Xl, x2) under zero external load q. It is obvious 
that the above-mentioned path is not unique. Therefore, we distinguish a class of actions such that the 
deflection w varies in time according to the given law but with an unknown value w, for t = t . ,  after which 
the corresponding load q, = q(xl,  x2 , t , )  is instantaneously removed, so that  after elastic unbending the 
residual deflection is tL'(Xl, X2, t , )  ---- I~,(Xl, X2), 

Thus, we consider the following IP class: it is required to determine a function w, = w.( z l ,  z2) such 
that at the current deflection W(Zl, z2, t) = f ( t )w , ( za ,  z2) (0 <<. t <~ t ,)  [f(t)  is the given function, f(0) = 0 
and f ( t . )  = I)] at t = t . ,  after instantaneous removal of the external load q. = q( zhZ2 , t , )  and elastic 
unloading, the residual deflection ~b(Zl, z2, t , )  takes the given value ~b,(xl, z2). 

In this case it is assumed that for t < 0 the plate is in an undeformed state and, hence, e~t = 0 for 
t = 0 everywhere in the plate. 

We give several remarks on the process of instantaneous unloading at t = t .  and formulate the necessary 
boundary conditions for 3'- The deflection w, is representable in the form w. = w, + tb., where tb. is the given 

e is a value of elastic unbending that is a solution of the pure elastic problem for the residual deflection and w. 
external load q. = q(zl, x2, t . )  subject to appropriate boundary conditions. In this case, for stresses at t = t. 
we have [1, 2] 

~ = a~l, + Pkl,, (1.7) 

where Pkl, are the residual stresses occurring after elastic unloading and trot , are the elastic-stress components 
e i . e . ,  that correspond to the deflection w,, 

' (1 .8 )  = bklmn~mn , = --gbklranlll,,.mn. 

Here bklmn are the components of the elastic-modulus tensor, which is inverse to aklmn , so that 

aklmnbklij = (~irnt~jn (1.9) 

(6ira are the components of the unit tensor). 
Given the external load q, (x l , x2) ,  the equation for w, ~, in view of (1.2) and (1.8), is of the form 

bklmntOe,,klmn = 12 h-3q, .  
In turn, the quantity q, is related to the moments Mkl,, which correspond to the stresses o'kl,, by the 

relation resulting from (1.2): q, = -Mkt , ,k t .  From the last two equalities we obtain 

b e ___ klmnW,,klmn -12  h-3Mkl,,kt.  (1.10) 

As the boundary conditions on 3' for unloading at t = t, ,  one can use one of the following relations [1,2]: 

w ~ ( l . l l a )  = O , /On  = 0;  

w e , = G, -'- O; ( l . l l b )  

& = CJ, + a & / &  = o; ( i . 1 1 c )  
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Owe,/On = Q,, + O/2/,/Os = 0 (1.11d) 

(the tilde denotes the quantities characterizing the force effect after unloading). Conditions (1.11a)-(1.11c) 
imply, respectively, that in unloading the contour 7 is clamped, free-supported, and free of loads. 

One can easily see that,  given the function w, (x l ,  z2), the components akt , (x l ,  x2, z) = ~rkt(xt, x2, z, t,) 
are determined uniquely from the system [which follows from (1.1) and (1.4)] 

aklmn&mn -I- rlkl(O'mn) = --ZCW,,kl (1.12) 

subject to the initial conditions ~rkt(xl, x2, z, 0) = 0, since from (1.1) and (1.4) for t = 0 we have akt,n,,am, = O, 
because r = 0 and w = 0. 

Thus, the right-hand side of Eq. (1.10) is defined by the function w, = w , ( x l , z 2 ) ,  and hence, the 
solution of the boundary-value problem (1.10) and (1.11) depends on w,. Some properties of the operator 

e w, = we,(w, ) are established below. 
If we denote the right-hand side of (1.10) by ~(w,) ,  taking into account the equality w, e = w, - ~5,, 

for the unknown function w, = w , ( x l , x 2 ) ,  from (1.10) we obtain the equation bklmnW,,ktmn -- ql(w,) = 
bktmnCO,,klmn; in the general case of nonlinear dependences rlk I = rlkt(am,), the operator �9 = ~(w,)  cannot 
be written in explicit form. Nevertheless, under certain simple constraints on the function f = f ( t ) ,  the IP 
considered can be reduced to a sequence of direct problems of the type of (1.10) with the known right-hand 
side and boundary conditions (1.11), whose solutions reduce to the solution of the IP. 

2. C o r r e c t n e s s  of  t h e  Inve r se  P r o b l e m .  Let us determine the conditions of existence of a single 
generalized solution of the formulated IP. 

We introduce the notation 
. ,x1/2 

1 bkimn~kl~mndV) . (/ 
v v 

Let the deflection field w = W(Xl,X2) be given. Denote by ~ l  elastic stresses that correspond to these 
deflections, i.e., ~1  = bklm,gemn = -zbk tm.w,mn.  Let 

_--e ( , \1/2 
I1'-"11 = I1 (~  I 2 ( ~ : t l ) =  \ /(h3/24)bklmnw,klW,mn dS) D 

s 

As is known from [3], if at three points (that do not lie on the same straight line) on a plate the 
deflection w = 0 [for example, w = 0 on the contour 7, as is the case with boundary conditions of the form of 
(1.1a) or (1.12b)], then the quantity Ilwll is a norm which is equivalent to IlWllH2(S), the space H2(S) being 
full with respect to the introduced norm. The latter is generated by the scalar product 

S 

In the general case, the quantity Ilwll is a seminorm, and from the equality Ilwll = 0 it follows that w is a 
linear function of zl and x2. 

Let the kinematical actions be given by w (i) = f ( t )w !  i) (i = 1, 2), where f ( t )  (0 ~ t <<. t ,)  is a 
known function; at the moment of unloading at t = t , ,  one of the boundary conditions (1.11) is satisfied 

simultaneously for both actions. In this case, it is assumed that the deflections w! i) = w!i)(Zl, z2) and the 

~(i) determined by (1.12), and, hence, the moments ""kt, associated stresses ~'kl, a~r(i) exhibit the required smoothness. 
so'that conditions (1.11) make sense. 

As before, the differences of the corresponding quantities are denoted by the symbol A. We estimate 
IIAw',ll in terms of I law, ll- Since I,(Acr~/,) = IIAw~,ll, from (1.7) and the equality [1, 2] 

klmnAO'mn,Z21Pkl, dV = O, 
V 
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which results from (1.3) and (1.11), we obtain 

I21(Aakt,) = Ilz2xw,~ll 2 +/x2(Apu,)/> II~w,~ll 2, (2.1) 

At any moment t (0 ~ t ~< t ,) ,  in view of (1.4) and (1.9), we have 

1 . 1 f 1 
+ ArlktAa~.t)dV = -~]AiktAaktdV ~f(akt.,.A~.~=a~k, __  = ~ f  .k,,..A~.,.r 

v v v 

< 11(Aakt)I1 (bklrn=A~rnn) = ll(Atrkl)I2 (Aek/), (2.2) 

where the known inequality 

I 
f aklmnXttymndV <~ II(xkt)II(ykz) 2 
V 

for Xkl = AO'kl  and Ykl = bklmnA~rnn was used. 
Taking into account inequality (1.5) and the equality 

1 
f akz,.n~r~.~X~kzdY = J 1 ( ~ k t ) I I ( ~ k t ) ,  h ( ~ k ~ )  = I1~11 = I]111~w*ll, 2 
v 

from (2.2) we find 

d 
Jl(Acrkl ) -4-AIl(ACrkl ) <~ I]lllAw, II or "~ [II(ACrkl)exp(At)] <~ IIAw, II I]1 exp (At). 

Integrating this inequality with respect to time from zero to t ,  and taking into account that  A~rkt = 0 
for t = 0 everywhere in the plate [since Aw = 0 at t = 0, because f(0)  = 0], we obtain 

t .  

II(Ao'kt,) <~ ~llzXw, ll, 13 = exp ( -At , )  / I ] 1  exp (At)dr. (2.3) 
0 

From (2.1) and (2.3) follows the required estimate 

IIAw,~ll ,< ~llZxw, ll. (2.4) 

Since IIAw, l[ = IIAw e + At~,I[ ~< [[Aw~] I + IIAtb,[[, it follows from (2.4) that  (1 - ~)HAw,]l ~< [IAtb,[[, which, 
for fl < 1, guarantees uniqueness of the solution of the problem considered and continuity of the operator 
w. = w,(~, ) .  

It should be noted that  the inequality fl < 1 takes place for any function f = f ( t )  that  increases 
monotonically from zero to unity. Indeed, in this case, []1 = f ,  and from (2.3) we find 

t .  

/3 = 1 - A exp ( -At , )  ] f exp (At)dt < 1, 
0 

whence, in particular, it follows that  the min imum value of ~ corresponds to the relaxation regime of 
deformation in which f(0)  = 0, ] > 0 (0 < t < to), and f = 1 (to ~< t ~< t , )  as to ~ 0. One can 
easily see that  flmin = exp (--At,), i.e., in this case 

t .  

/ I f l  exp (At)dr = 1. 
0 

For any other regime, 

t .  t .  t .  

o o o 
= 1 .  
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To prove the existence of a generalized solution, we note that this problem reduces to solution of the 
following functional equation in the region S: 

w, = F(w,) ,  F(w,)  = w~,(w,) + Co,. (2.5) 

s Here tb, = tb,(zl,  x2) is a prescribed function and the operator w, = we,(w,) was defined in See. 1. 
Let us first consider the case in which the boundary conditions are of the form (1.11a). Then one can 

show that if w! i) E H2(S) (i = 1, 2) the estimate (2.4) holds. 
Let tb, E H2(S), i.e., [[~b,[[ < r Then the operator F from (2.5) transforms each element w, E H2(S) 

into an element of the same space, since 

IIF(w*)ll = IIw, ' + ~*11 -< IIw,~ll + Ilw*ll -</311w*ll + II~*ll < 

[here we used inequality (2.4) for w, e(o = w, e, w, e(2) = 0, w 0) = w,, and w (2) = 0]. Moreover, for/3 < 1 the 
operator is a contraction operator, since 

[IF(w! 1)) - F(w!2))l [ = IIw,~(w! 1)) - w**(w!2))l [ ~< Dllw! 1 ) -  w!2)ll 

in view of (2.4). From the principle of contractive mappings [4], it follows that there is a unique solution 
w, E H2(S) of Eq. (2.5), and it can be obtained as the limit of the sequence {w,n}, where w, "+1 = F(w",), 
i.e., according to (2.5), 

w", +1 = we,(w",) + tb, (n = 0, 1, 2 , . . . ) ,  (2.6) 

and w, ~ is an arbitrary element from H2(S). 
As to the other boundary conditions, we note that in order that (1.11b) or (1.11c) and (1.11d) make 

sense, it is sufficient to assume that tb, E H3(S) [accordingly, @, E H4(S)]. Then, with certain smoothness 
of the function z/kt = qkt(cr,n,) from (1.12), the operator F from (2.5) will transform any element w, E H3(S) 
[or w, E H4(S)] into an element of the same space, since one can show that w~, E H3(S) [or w, ~ E H4(S)]. 
Therefore, in both cases, all elements of sequence (2.6) belong to the corresponding space [(H3(S) or H4(S)] 
if w, ~ belongs to this space. Since the operator F is a contraction operator in the space H2(S), the limit of 
sequence (2.6) for n ---+ r will belong, at least, to this space, i.e., w, E H2(S) D H3(S) D H4(S). As one 
can easily see, in the case of boundary conditions (1.11c) and (1.11d), the deflection w, is determined with 
accuracy to an arbitrary linear function of xl and x2 and to an arbitrary constant, respectively. 

n ~II; e l l  " = w,(xx ,x2) ,  the deflection w, = As was mentioned in Sec. 1, given the function w, w , (w , )  is a 
solution of boundary-value problem (1.10) and (1.11). Therefore, in each iteration, the IP reduces to the direct 
problem for w, e. The rate of convergence of successive approximations to the exact solution is determined by 
the known inequality [4] 

0 
I1 ," - w ,  II -  ,11/(1 - (o < / 3  < 1) .  

It should be noted that the uniqueness of solution of the IP can be proved under weaker conditions than 
those used above, in particular, in place of (1.5), it is sufficient to postulate the validity of the inequality [2] 

t 

/3(t) - - / / A ~ k l A a k l d V d t  
H 

0, 
0 V  

where the equality sign is possible only for Aakt(r)  = 0 (0 ~< r < t) everywhere in V. 
Indeed, integrating inequality (2.2) with respect to time from zero to the current time t, we obtain 

t 

+ h(t) 2 / II ( Aa  kl( t ) ) ll A (v( t ) ii dt ==. 2r (2.7) 

0 

Since /3(t) >/ 0 and II(,5akt) = r from (2.7) we have (~)2 ~< 2r or ~r  ~< v llA ll. 
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Integrating the latter inequality with respect to time and taking into account that r = 0, we find that 

t 

2~ 1/2 ~< V~/IIAwlldt ,  
0 

and, hence, 

t t 

o o 

Since :,a,, = o, we have II:"*II = ll:'w:ll, and taking into account (2.1), from (2.7) and (2.8) we 
obtain 

t. 

121(:,pkt,) + I3(t,) <<. (3~ - 1)llAw,~ll 2, 30 = /I . : ldt ,  
o 

which, for ] / >  0 and 30 = 1, is possible only if Acrkt(r ) = 0 (0 ~< r < t,),  whence, in turn, follows uniqueness 
of the solution of this problem in the above-mentioned sense. 

3. E s t i m a t e  of  t h e  Level  of  R e s i d u a l  S t resses  for t = t , .  Inequalities of the type of (2.3) and 
(2.4) yield an upper bound for the level of residual stresses arising in the plate at t = t, after elastic unloading. 
As a measure that characterizes this level, we choose I ,  = I2(pkl,).  

It should be noted that the formulas obtained in Sec. 2 for the differences between the corresponding 
quantities are also valid for the quantities themselves, i.e., the sign A can be omitted. This follows from 
the fact that as the first, one can take the main stress-strain state, and as the second, the natural state 
corresponding to zero deflections, deformations, and stresses everywhere in the plate. 

Bearing in mind this remark, from (2.1) and (2.3) we obtain 

I,  ~< 3211w,112 -IIw,~ll 2 (3 < 1). (3.1) 

Since, according to (2.4), 

IIw,~ll ~< 311w, ll = 311w~ + ~, l l  ~< 3(llw,~ll + II~,ll) 

i.e., IIw~,ll ~< 3(1 - 3) - l l l t~ , l l ,  and 

!lw, ll 2 ~< IIw,~ll 2 + 21l~o:ll II~,ll + II~,ll 2 ~< IIw,~ll 2 + [23(1 - 3 ) - 1 +  X][[ffJ, II 2, 

from (3.1) we find 

I, ~ (3 u - X)[Iw,~]] u + 32(1 + 3)(1 - 3 ) - l l l ~ , l l  2 ~< 32(1 + 3)(1 - 3)-lHt~,]l 2. 

Hence, it is evident that the minimum estimate for I, is obtained for minimum 3. As was noted above, 
3rain = exp ( -At , ) ,  which corresponds to the relaxation regime of deformation. 

4. N u m e r i c a l  E x a m p l e s .  We consider a square plate of thickness h = 6 whose middle plane occupies 
area S: 0 ~< zi  <~ 300 (i = 1, 2) (hereafter all dimensions are given in millimeters). The residual deflection for 
t = t, is given by zb, = - 9 -  1 0 - 4 [ X l ( X l  - 300) + x2(x2 - 300)]. 

The plate material is considered isotropic, and the governing strain relations for the plate are of the 
form of (1.4), where the elastic strains r and the viscous-strain rates r/k I are given by 

r = (3 /2)~176 (E is Young's modulus); (4.1) 

r/kt = (3/2)A[exp ( a a i ) -  1]a~ (A and a are constants). (4.2) 

In formulas (4.1) and (4.2), ~~ t = akl - (1/3)cr,n6kl are the stress-deviator components and ai = 
(a~a + ~22 - a1 :22  + 3a22) 1/2 is the stress intensity. 

One can easily see that relations (4.2) are a particular case of relations (1.6) which contain the function 
F = B [ e x p ( A E / B ) -  1] mentioned in Sec. 1. Here E = ai/v/-E, B = A v e ,  and A = a A E .  In this case, 
inequality (1.5) is valid. 

881 



As the function f = f ( t )  occurring in the condition of the problem we use 

f ( t )  = C[(1 - t / t , )  - (1 - t / t , )  ~ ] + t / t , ,  (4.3) 

where C i> 0 and ze > 0 are constants. 
As was mentioned above, for the constant fl from (2.3) the inequality ~ < 1 (which guarantees the 

correctness of the problem) is satisfied for ] /> 0. In the case considered, in order that the condition ] = 
[1 - C + Cze(1 - t / t , ) ~ - l ] / t ,  >1 0 be satisfied, it is sufficient that 

(a) 1 - C t > 0 ,  C~>0,  a n d a e > 0 ,  i . e . , 0~<C ~<l  a n d a e > 0 ,  
o r  

(b) ] (0) />  0 and ] = -Cae(ze - 1)(1 - t / t , )~ -2 / t2 ,  >1 O, i.e., C > 0 and 1 - 1 I V  <<. ze <<. 1. 
If ~e > 1 and C > 0, then I]1 ~< [I 1 - Cl + Cze(1 - t / t , ) ~ - l ] / t , ,  and, hence, integrating by parts, we 

obtain 
t .  t .  

J l]lexp(,~t)dt ~< I1 -Cl[exp ( ,~t , ) -  1]/(At,) + C + CA_/(1 - t/t,)" exp(,~t)dt 
0 0 

t .  

< I1 Cl[exp (.~t,) 1]/(At,) + C + C A / ( 1  - t / t , ) e x p  ()~t)dt = (I 1 - CI + C)[exp (At,) - 1]/(~t,). 
0 

Consequently, in this case, the condition f / <  1 is satisfied if 
(c) (11 - C] + C)[1 - exp ( - ~ t , ) ] / ( A t , )  <~ 1. 
The numerical solution of this problem is based on iterative process (2.6). Let the nth approximation 

for the unknown function w, n be known. The procedure of finding the (n + 1)th approximation for w, n+l is as 
follows. From (1.1), (1.4), (4.1), and (4.2) we find a system of equations of the form of (1.12), 

(3/2)&r~~ + (3/2)A[exp(o~r~) no n 1]ak //~ri " n -- = - - z f w , , k l  , (4.4) 

subject to the initial conditions a'~l = 0 for t = 0. Integrating the system, we determine the stress components 
art * of the nth approximation prior to unloading for t = t, and the corresponding moments Mfft ,. 

Then, to find the elastic deflection e, w, , we obtain an equation of the form of (1.10), 

D A A w e ,  '~ = -M~t,,kz, (4.5) 

which in this case is biharmonic [2, 5] and is subject to one of the boundary conditions (1.11) (D = Eh3 /9  is 
the cylindrical stiffness of the plate). 

From the known function wen, according to (2.6), we find the (n + 1)th approximation for w, n+l = 
e n  w, + tb,. The procedure is then repeated. As a zeroth approximation for the desired function w, we use 

w 0 = ~ , .  

The following values of the constants were used in the calculations: E = 66,700 MPa, A = 
2.008- 10 -9 sec -1, (~ = 0.13 MPa -1, and t ,  = 10 h. It was assumed that at the moment of unloading 
(t = t ,)  the contour 7 is absolutely free, and this corresponds to boundary condition (1.11c). In each iteration 
problem (4.5) and (1.11c) was solved by the finite-element method. For this, a triangular element with a 
cubic dependence of the form function on the uniform L coordinates of the triangle was used [6]. In view of 
symmetry, only a quarter of the plate was considered (0 ~ xi <<. 150, i = 1, 2). The quarter was divided into 
18 triangles (16 nodes). In calculating the moments MkI, ,  we used the Simpson formula with 13 integration 
nodes along the plate thickness. System (4.4) was solved at each separation node in each iteration (in the 
plane 0XLX2 and along the z coordinate) using the Runge-Kutta-Merson method with automatic selection of 
time steps. Iteration process (2.6) was terminated when the condition max l1 -l~,n(xl, x2)/(o,(Zl, x2)l <~ 10-3 

Zl,Z2 
was satisfied. 

Calculations were performed for various values of the parameters C and ~e from (4.3). A proper choice 
ef the parameters allows one to describe different deformation regimes,, for example: 

(1) a monotonic increase in deflection from 0 to w, with time ( f />  0, and the appropriate restrictions 
on C and ee were given above); 
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(2) deformation close to relaxation [1, 2, 5], i.e., an almost instantaneous growth in deflection to w, 
with subsequent fixation up to time t = t ,  (C = 1 and ~ >> 1); 

(3) a monotonic increase in deflection to a value greater than w, with a subsequent monotonic decrease 
t o w ,  ( C >  1 a n d r e >  1). 

Figures 1 and 2 show the graphs for the given residual deflection th, (dashed curves) and the desired 
deflection w, (solid curves) in the cross sections x2 = 150 and 0 for C = 1.0, 0.8, 1.3, 1.0, 1.0, and 1.3, ~ = 1, 
2, 2, 5, 30, and 30 (Fig. 1, curves 1-6), and C = 1.0, 0.8, 1.3, 1.0, and 1.3, m = 1, 2, 30, and 30 (Fig. 2, 
curves 1-5). All these values satisfy the above-mentioned restrictions (a), (b), or (c), which are sufficient for 
satisfaction of the inequality ~ < 1, which guarantees the correctness of the problem considered. 

Among the functions of the form of (4.3) determined by the parameters C and ee, it is of interest to 
find a function for which the level of residual stresses in the plate is minimum after unloading at t = t,. The 

e by the components Pkl, are found from (1.7): Pkl, = crkl, - cr~l ,. Here akl,e are related to the deflection w, 
relations of the form (1.8): o'~t , = -(2/3)Ez(w~,,kz + w~,n,,~kt ). As a quantity that characterizes the level of 

residual stresses, we choose their intensity pi, = (p21, + p22, - pll,p22, + 3 p~2,) 1/2. 
For the deformation regimes corresponding to curves 1-6 in Fig. 1, we obtained the following values: 

Pi*max = 1.09, 0.93, 0.88, 0.77, 0.67, and 0.69 MPa. Hence one can see that min Pi*max -- 0.67 MPa corresponds 
to C = 1 and m = 30. A comparative analysis of the results shows that for C = 1 and ze ~> 30 the stress-strain 
state of the plate (including the diagrams of residual stresses) almost coincides with that for the relaxation 
regime of deformation. Thus, the latter regime is optimal in terms of the level of residual stresses after 
unloading. This is in qualitative agreement with the estimate obtained in Sec. 3. 

; h i s  work was supported by the Russian Foundation for Fundamental Research (Grant 94-01-0896). 
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